Tuesday, January 12, 2021

CUDA on an RTX3070, in an nutshell.

CUDA terminology can overwhelm you. SM, Warp, Core, Thread, Block, Scheduler, Grid. I have been writing CUDA kernels for my RTX 3070, and I thought I would write down what I learned.

First things first: when you write a compute kernel, you write scalar code. So in my case, doing Photon Mapping, my kernel code handles a single ray, and one primitive at a time.

Compare this with writing SIMD CPU code: you explicitly work on arrays, writing vector code, not scalar code. In single-precision floating point operations, that means a vector of 8 (AVX) values at a time, or 16 (AVX512) values at a time.

This does not mean that the hardware executes this as scalar code, though. The GPU will execute your code in batches of 32. This batch is called a warp. Theoretically, warpsizes could be something different than 32, but for GeForces, they are always 32. So in a way, what the CPU does explicitly, 8- or 16-wide, the GPU does 32-wide, implicitly. Warps are executed (by 32 CUDA cores) in sync, much like the lanes of a SIMD register in a CPU. (Caveat emptor: only half the CUDA cores of Ampere GPUs can do integer operations, so throughput is halved for that.)

The workhorses inside an Ampere GPU, are the Steaming Multiprocessors, or SM for short. An Ampere GPU, like the RTX 3070, has SMs that can execute 4 of these warps at the same time. To do this, it has 4 schedulers per SM.

Let's go back to the software side: your kernel. If you have a million photons that you want to trace, your kernel will be executed a million times. In CUDA terminology, there are a million threads of execution. And threads are grouped in blocks. All the blocks together, is the grid. And every block will be assigned to an SM for computation.

When a warp is scheduled and running, the 32 threads in a warp could diverge. If one of the threads is blocked waiting on something, the whole warp is blocked. This is bad. But luckily, the scheduler will intervene, and switch out the warp for a non-blocked warp. Each of the 4 schedulers in a SM can keep up to 12 warps in flight. Often there will be at least one warp ready to run. The net effect is that the latencies are hidden.

When a scheduler has not a single warp that is ready to advance, compute throughput is lost. The NSIGHT Compute profiling tool can detect how often this happens for your kernel.

Even though your kernel is written in scalar form, each iteration of your kernel is still responsible for run-time selecting the right work! That is why nearly every CUDA program will contain the following code:

const uint32_t index = blockIdx.x * blockDim.x + threadIdx.x;
...
foo = bar[ index ];
  

The upshot of all this, is that if your kernel does a = b + c then, provided the memory bandwidth is there, then every SM executes 4x32 = 128 instances of this, and with the 48 SMs of the 3070, that means 6144 instances. So 6144 b values are added to 6144 c values and assigned to 6144 a values.

Note that the best I could hope for on my Xeon W2140B workstation with AVX512 is 8 cores each computing 16 floats, which is 128 instances (or possibly double that, if both execution units can be kept fed.)

Let me conclude by showing what you can do with all the compute power. Here is a scene that is globally illuminated by 2M photons that bounced once. I can compute this in a handfull of milliseconds on the rtx 3070. Not bad!

Tuesday, January 5, 2021

Revisiting Android Studio

Yay, it is the year 12021 HE already. A palindrome year! And this is my first blog post for the year.

So you are still writing Objective-C? Not going with the times, my friend. Or you are still writing C/C++ Android apps? Again, you are not making it easy on yourself. But alas, you are in good company. You are in the company of me. Cheers!

Holding off on Kotlin and Swift can make it a little trickier. For instance, today's excercise is to install Android Studio from scratch on a new machine and build my C/C++ game (it has a little Java too.)

So, the download was easy enough. But I must say the Welcome Screen of Android Studio does not inspire confidence. This is what the welcome screen looks like, when resized. Oops.. not repainting the entire screen.

Seeing that this is cosmetic, let's glance over that and load up my Little Crane project. When I do this, after some loading and downloading, I am greeted by an error:

Gradle sync failed: Cause: com.android.builder.sdk.LicenceNotAcceptedException: Failed to install the following Android SDK packages as some licences have not been accepted.

Again, easily rectified, as the optional NDK needs to be installed first. For this, close the project, and start the SDK manager from the Welcome screen. In the SDK Manager, choose the SDK Tools tab, and select the latest NDK.

Let's try again! This time:

Gradle sync failed: Cause: executing external native build for cmake /home/bram/apps/LittleCrane/AndroidStudio/jni/CMakeLists.txt

Although it does not say so directly, my hunch is that this is a case of the cmake tool not being found, as opposed to something being wrong with my CMakeLists.txt file. Let's try installing cmake from the SDK Manager. I am prompted with two options for the cmake version, but let's try the newest: cmake 3.10.2

WARN - ues.SyncIssueUsageReporterImpl - Multiple sync failures reported. Discarding: SDK_BUILD_TOOLS_TOO_LOW 
WARN - ues.SyncIssueUsageReporterImpl - Multiple sync failures reported. Discarding: SDK_BUILD_TOOLS_TOO_LOW 
WARN - e.project.sync.GradleSyncState - Gradle sync failed: Cause: executing external native build for cmake /home/bram/apps/LittleCrane/AndroidStudio/jni/CMakeLists.txt

Consult IDE log for more details (Help | Show Log) (1 s 373 ms) 
With that IDE log being:
    2021-01-05 11:09:09,260 [ 387004]   INFO - .project.GradleProjectResolver - Gradle project resolve error 
org.gradle.tooling.BuildActionFailureException: The supplied phased action failed with an exception.
	at org.gradle.tooling.internal.consumer.connection.PhasedActionAwareConsumerConnection.run(PhasedActionAwareConsumerConnection.java:58)
	at org.gradle.tooling.internal.consumer.connection.ParameterValidatingConsumerConnection.run(ParameterValidatingConsumerConnection.java:62)
	at org.gradle.tooling.internal.consumer.DefaultPhasedBuildActionExecuter$1.run(DefaultPhasedBuildActionExecuter.java:78)
	at org.gradle.tooling.internal.consumer.DefaultPhasedBuildActionExecuter$1.run(DefaultPhasedBuildActionExecuter.java:70)
	at org.gradle.tooling.internal.consumer.connection.LazyConsumerActionExecutor.run(LazyConsumerActionExecutor.java:87)
	at org.gradle.tooling.internal.consumer.connection.CancellableConsumerActionExecutor.run(CancellableConsumerActionExecutor.java:45)
	at org.gradle.tooling.internal.consumer.connection.ProgressLoggingConsumerActionExecutor.run(ProgressLoggingConsumerActionExecutor.java:61)
	at org.gradle.tooling.internal.consumer.connection.RethrowingErrorsConsumerActionExecutor.run(RethrowingErrorsConsumerActionExecutor.java:38)
	at org.gradle.tooling.internal.consumer.async.DefaultAsyncConsumerActionExecutor.lambda$run$0(DefaultAsyncConsumerActionExecutor.java:55)
	at org.gradle.internal.concurrent.ExecutorPolicy$CatchAndRecordFailures.onExecute(ExecutorPolicy.java:64)
	at org.gradle.internal.concurrent.ManagedExecutorImpl$1.run(ManagedExecutorImpl.java:48)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at org.gradle.internal.concurrent.ThreadFactoryImpl$ManagedThreadRunnable.run(ThreadFactoryImpl.java:56)
	at java.lang.Thread.run(Thread.java:748)
  

I think it is time to call in the cavalry at stackoverflow for this one. The highest-voted suggestion? Build -> Refresh Linked C++ Projects is greyed-out in my menu. Probably because it was never created in the first place?

At this point, I am tempted to go back to my old machine, with an old copy of Android Studio, and just make sure I do not update it. Because it did work when I last used it, I'm guessing a year ago or so?

I notice that SDK Command Line Tools are not installed. Maybe that's the cause? Adding Android SDK Command-line Tools 4.0.0rc1 to see if that's it. But sadly, no.

Ok, maybe we need to spec a higher Gradle version, per Gradle Plugin Release Notes?

Excellent. It still won't sync, but at least the newer Gradle will print out the exception that occurred! No version of NDK matched the requested version 21.0.6113669. Versions available locally: 22.0.7026061

    * Exception is:
...
Caused by: org.gradle.api.InvalidUserDataException: NDK not configured. Download it with SDK manager. Preferred NDK version is '21.0.6113669'. 
	at com.android.build.gradle.internal.cxx.model.TryCreateCxxModuleModelKt$tryCreateCxxModuleModel$1.invoke(TryCreateCxxModuleModel.kt:138)
	at com.android.build.gradle.internal.cxx.model.TryCreateCxxModuleModelKt.tryCreateCxxModuleModel(TryCreateCxxModuleModel.kt:148)
	at com.android.build.gradle.internal.cxx.model.TryCreateCxxModuleModelKt.tryCreateCxxModuleModel(TryCreateCxxModuleModel.kt:246)
	at com.android.build.gradle.internal.TaskManager.createExternalNativeBuildJsonGenerators(TaskManager.java:1385)
	at com.android.build.gradle.internal.ApplicationTaskManager.createTasksForVariantScope(ApplicationTaskManager.java:183)
	at com.android.build.gradle.internal.VariantManager.createTasksForVariant(VariantManager.java:331)
	at com.android.build.gradle.internal.VariantManager.createVariantsAndTasks(VariantManager.java:207)
	at com.android.build.gradle.internal.plugins.BasePlugin.createAndroidTasks(BasePlugin.java:671)
...
  

Huh... why does it want NDK v21? I can't find any references in my project source insisting on NDK v21. I understand that the default NDK is determined by the Gradle plugin. So let's push the version nr for that up further, to latest: 4.1.0 instead.

Yes! Progress. Now: Minimum supported Gradle version is 6.5. Current version is 6.1.1.

And now the Gradle Sync is successful! Although it still want NDK v21 and not v22. I wonder why? Anyway, I have a new build!

Lessons learned:

  • Always set your gradle version to latest, before doing anything, in the build.gradle file. Mine is now set to 4.1.1. at the time of writing.
  • Copy over your debug.keystore from your old machine, because a fresh copy of Android Studio will create a new one, that is not registered in your Google Play developer console yet.